Find the vectors T, N, and B at the given point.
r(t) = <9 cos t, 9 sin t, 9 ln cos t>, (9, 0, 0)
T = <0, 1, 0>
N = ????
B = ????
1 Answer
-
r(t) = <9 cos t, 9 sin t, 9 ln cos t>
Differentiating,
r'(t) = <-9 sin t, 9 cos t, 9 * -sin t/cos t>
.......= <-9 sin t, 9 cos t, -9 tan t>.
||r'(t)|| = 9√(sin^2(t) + cos^2(t) + tan^2(t))
.........= 9√(1 + tan^2(t))
.........= 9√(sec^2(t))
.........= 9 sec t.
So, T(t) = r'(t)/||r'(t)||
.............= <-9 sin t, 9 cos t, -9 tan t>/(9 sec t)
.............= <-sin t cos t, cos^2(t), -sin t>.
Next,
T'(t) = <-cos^2(t) + sin^2(t), -2 sin t cos t, -cos t>
........= <-cos(2t), -sin(2t), -cos t>
So, ||T'(t)|| = √(1 + cos^2(t)).
Hence,
N(t) = T'(t)/||T'(t)||
.......= <-cos(2t), -sin(2t), -cos t>/√(1 + cos^2(t)).
-----------
Letting t = 0:
T(0) = <0, 1, 0>
N(0) = <-1, 0, -1>/√2
B(0) = T(0) x N(0) = <-1, 0, 1>/√2.
I hope this helps!