Find the vectors T, N, and B at the given point. r(t) = <9 cos t, 9 sin t, 9 ln cos t>, (9, 0, 0)?

Find the vectors T, N, and B at the given point.

r(t) = <9 cos t, 9 sin t, 9 ln cos t>, (9, 0, 0)

T = <0, 1, 0>

N = ????

B = ????

1 Answer

  • r(t) = <9 cos t, 9 sin t, 9 ln cos t>

    Differentiating,

    r'(t) = <-9 sin t, 9 cos t, 9 * -sin t/cos t>

    .......= <-9 sin t, 9 cos t, -9 tan t>.

    ||r'(t)|| = 9√(sin^2(t) + cos^2(t) + tan^2(t))

    .........= 9√(1 + tan^2(t))

    .........= 9√(sec^2(t))

    .........= 9 sec t.

    So, T(t) = r'(t)/||r'(t)||

    .............= <-9 sin t, 9 cos t, -9 tan t>/(9 sec t)

    .............= <-sin t cos t, cos^2(t), -sin t>.

    Next,

    T'(t) = <-cos^2(t) + sin^2(t), -2 sin t cos t, -cos t>

    ........= <-cos(2t), -sin(2t), -cos t>

    So, ||T'(t)|| = √(1 + cos^2(t)).

    Hence,

    N(t) = T'(t)/||T'(t)||

    .......= <-cos(2t), -sin(2t), -cos t>/√(1 + cos^2(t)).

    -----------

    Letting t = 0:

    T(0) = <0, 1, 0>

    N(0) = <-1, 0, -1>/√2

    B(0) = T(0) x N(0) = <-1, 0, 1>/√2.

    I hope this helps!

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts