SHOW WORK
solve for left side to equal 0
4 Answers
-
(cosx - cosy / sinx + siny) + (sinx - siny / cosx + cosy) = 0 =====> LCD
[ (cosx - cosy) * (cosx + cosy) / (sinx + siny) * (cosx + cosy) + [ (sinx - siny)*(sinx + siny) / (cosx + cosy) * (sinx + siny) ] = 0
[ ( cos^2(x) + cos(x)cos(y) - cos(y)cos(x) - cos^2(y) ) / (sinx + siny) * (cosx + cosy) + [ (sin^2(x) + sin(x)sin(y) - sin(y)sin(x) - sin^2(y)) / (cosx + cosy) * (sinx + siny) ]
[ ( cos^2(x) + cos(x)cos(y) - cos(y)cos(x) - cos^2(y) ) + ( sin^2(x) + sin(x)sin(y) - sin(y)sin(x) - sin^2(y) ) ] / [ (cosx + cosy) * (sinx + siny) ]
[ cos^2(x) - cos^2(y) + sin^2(x) - sin^2(y) ] / [ (cosx + cosy) * (sinx + siny) ]
[ cos^2(x) + sin^2(x) - cos^2(y) - sin^2(y) ] / [ (cosx + cosy) * (sinx + siny) ]
knowing the identities;
cos^2(x) + sin^2(x) = 1
[ 1 - cos^2(y) - sin^2(y) ] / [ (cosx + cosy) * (sinx + siny) ]
[ 1 - ( cos^2(y) + sin^2(y) ) ] / [ (cosx + cosy) * (sinx + siny) ]
[ 1 - ( 1 ) ] / [ (cosx + cosy) * (sinx + siny) ]
[ 1 - 1 ] / [ (cosx + cosy) * (sinx + siny) ]
[ 0 ] / [ (cosx + cosy) * (sinx + siny) ]
0
-
Sinx Siny
Source(s): https://shrinke.im/a8nZA -
For the best answers, search on this site https://shorturl.im/YD7Fx
[(cosx-cosy)/(sinx+siny)] + [(sinx-siny)/(cosx+cosy)] = [cos^2x - cos^2 y + sin^2x - sin^2y]/[(sinx + siny)(cosx + cosy)] = [1-1]/[(sinx + siny)(cosx + cosy)] = 0 -------- Attn: Since [(cosx-cosy)/(sinx+siny)] + [(sinx-siny)/(cosx+cosy)] is given, that means it is well defined and (sinx+siny)(cosx+cosy) not = 0
-
(cosx - cosy / sinx + siny) + (sinx - siny / cosx + cosy)
= [(cos^2x - cos^2y) + (sin^2x - sin^2y)] / [(sinx + siny)(cosx + cosy)]
= [cos^2x+sin^2x - (cos^2y+sin^2y)] / [(sinx + siny)(cosx + cosy)]
= (1 - 1)/ [(sinx + siny)(cosx + cosy)]
= 0