What are the exact solutions of x2 − 3x − 7 = 0?

6 Answers

  • b^2-A(a)(c)

    b= -3

    a= 1

    c= 7

    (-3)^2 - 4 (1)(-7)

    9+28

    =37

    sqrt(b^2 - 4(a)(c))=sqrt(37)

    X= -b±sqrt(b^2 - 4(a)(c))

    ------------------------------

    2a

    X= 3±sqrt(37)

    -------------

    2

    X=3+sqrt(37)

    ------------------

    2

    X=3-sqrt(37)

    ---------------

    2

  • x2 - 3x - 7 = 0

    (x - 3/2)^2 - 37/4 = 0

    Solutions:

    x = (3 - sqrt37)/2

    x = (3 + sqrt37)/2

  • when Ax^2 + Bx + C = 0, then x = (-B +/- Sqrt(B^2 - 4AC)) / 2A

    For your equation, A = 1, B = -3, and C = -7

    x = (3 +/- Sqrt((-3)^2 - 4(1)(-7))) / (2(1))

    x = (3 +/- Sqrt(9 +28)) / 2

    x = (3 +/- Sqrt(37)) / 2

  • I assume it's x^2 - 3x - 7 = 0

    Use quadratic formula [-b +- sqrt (b^2 - 4ac)]/2a

    =(-(-3) +- sqrt ((3)^2 - 4(1)(-7))) / 2(1)

    = (9 + sqrt 37)/2 OR (9 - sqrt 37)/2

    = (9 + 6.083)/2 OR (9 - 6.083)/2

  • x1 = 3/2 + (1/2)*sqrt(37)

    x2 = 3/2 - (1/2)*sqrt(37)

    Source(s): Maple 15
  • x = [ - b ± √ ( b ² - 4 a c ) ] / 2 a

    x = [ 3 ± √ ( 9 + 28 ) ] / 2

    x = [ 3 ± √ 37 ] / 2

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts