6 Answers
-
b^2-A(a)(c)
b= -3
a= 1
c= 7
(-3)^2 - 4 (1)(-7)
9+28
=37
sqrt(b^2 - 4(a)(c))=sqrt(37)
X= -b±sqrt(b^2 - 4(a)(c))
------------------------------
2a
X= 3±sqrt(37)
-------------
2
X=3+sqrt(37)
------------------
2
X=3-sqrt(37)
---------------
2
-
x2 - 3x - 7 = 0
(x - 3/2)^2 - 37/4 = 0
Solutions:
x = (3 - sqrt37)/2
x = (3 + sqrt37)/2
-
when Ax^2 + Bx + C = 0, then x = (-B +/- Sqrt(B^2 - 4AC)) / 2A
For your equation, A = 1, B = -3, and C = -7
x = (3 +/- Sqrt((-3)^2 - 4(1)(-7))) / (2(1))
x = (3 +/- Sqrt(9 +28)) / 2
x = (3 +/- Sqrt(37)) / 2
-
I assume it's x^2 - 3x - 7 = 0
Use quadratic formula [-b +- sqrt (b^2 - 4ac)]/2a
=(-(-3) +- sqrt ((3)^2 - 4(1)(-7))) / 2(1)
= (9 + sqrt 37)/2 OR (9 - sqrt 37)/2
= (9 + 6.083)/2 OR (9 - 6.083)/2
-
x1 = 3/2 + (1/2)*sqrt(37)
x2 = 3/2 - (1/2)*sqrt(37)
Source(s): Maple 15 -
x = [ - b ± â ( b ² - 4 a c ) ] / 2 a
x = [ 3 ± â ( 9 + 28 ) ] / 2
x = [ 3 ± â 37 ] / 2