What is the limit of (tan 2x)^x as x –> 0+?

2 Answers

  • Let L = lim(x-->0+) (tan(2x))^x.

    Take ln's of both sides:

    ln L = lim(x-->0+) x * ln(tan(2x))

    = lim(x-->0+) ln(tan(2x)) / x^(-1).

    Since this is of the form "infinity/infinity", we can apply L'Hopital's Rule.

    So,

    ln L = lim(x-->0+) [(1/tan(2x)) * sec^2(2x) * 2] / [-x^(-2)]

    = lim(x-->0+) (-2x^2/sin(2x)) * sec(2x)

    = lim(x-->0+) (-x) * (2x/sin(2x)) * [1/cos(2x)]

    = 0 * 1/1 * 1

    = 0.

    Thus, L = e^0 = 1.

    I hope this helps!

  • e

    lim(x→0+)〖(tan2x)^x 〗

    Y=(tan2x)^x

    ln y=xln tan 2x

    lim(x→0+)ln y = lim(x→0+)xlntan2x

    lim(x→0+)〖lntan2x/(1/x)〗

    Using L’Hopital

    =lim(x→0+) ((2(sec2x)^2)/tan2x)/(-1/x^2)

    =-2 lim(x→0+)〖x^2/(sen2x cos2x)〗

    Applying for the second time

    =-2 lim(x→0+)〖x/((cos2x)^2-(sen2x)^2)〗

    0

    So we find

    lim ln y=0

    so

    lim y = e^0

    lim y=1

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts